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On a Large Time-Step High Resolution Scheme* 

By Ami Harten 

Abstract. This paper presents a class of new second-order accurate (2 K + 3)-point explicit 
schemes for the computation of weak solutions of hyperbolic conservation laws, that are 
total-variation-diminishing under a CFL restriction of K. These highly nonlinear schemes are 
obtained by applying a nonoscillatory first-order accurate (2K + 1)-point scheme to a 
modified flux. The so-derived second-order accurate schemes achieve high resolution, while 
retaining the robustness of the original first-order accurate scheme. 

1. Introduction. In this paper, we discuss numerical approximations to weak 
solutions of the initial value problem (IVP) for hyperbolic systems of conservation 
laws 

(l .1) Ut + f(U) X = ?, U (X, 0) = (A(X), -X0 < X < X0, 

where f(u) is continuously differentiable and +(x) is a BV function of compact 
support. 

We consider finite-difference approximations that are obtained by (2K + 1)-point 
explicit schemes in conservation form 

(1.2a) V jl = vj-A~yl2f-/ A = Tsh, 

where 

(1.2b) fi+1/2 
= I(VyK+1.... +K) 

Here V = v( jh, nr) and f, the numerical flux, is consistent with the flux f(u) in 
the following sense: 

(1.2c) f(U...IU) = f(u). 

The Courant-Friedrichs-Lewy (CFL) theorem states that the maximal time-step 
for a stable (2K + 1)-point explicit scheme is restricted by 

(1.3) Amax Iak(u) I < K, 
u, k 

where ak(u) are the eigenvalues of the Jacobian matrix A(u) = af/au. 
Recently, LeVeque [5], [6] has experimented with a large time-step first-order 

accurate scheme for the computation of discontinuous solutions of (1.1). His results 
show that using the scheme with K < 6 yields a rather adequate description of 
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propagation, and even interaction of discontinuities. Similar results in the scalar case 
were obtained by Brennier [1]. 

In [2] we describe a rather general technique to convert a nonoscillatory first-order 
accurate scheme into a second-order accurate one. Applying this technique to a 
3-point first-order accurate scheme which is stable under a CFL restriction of 1 
(K = 1 in (1.3)), results in a 5-point second-order accurate scheme that is stable 
under the same CFL restriction. 

Encouraged by the results of LeVeque and Brennier, we apply the technique of [2] 
to a nonoscillatory (2K + 1)-point first-order accurate scheme which has the maxi- 
mal CFL restriction K, with K > 1, to obtain a nonoscillatory (2K + 3)-point 
second-order accurate scheme that is stable under the same CFL restriction. The 
primary motivation for the development of schemes of this nature is the possible 
gain in computational efficiency due to the fact that a single application of such a 
large time-step scheme is less costly than several applications of the scheme with 
K = 1. 

The enlargement of the numerical domain of dependence requires a special 
treatment of boundaries. Fortunately, for the type of schemes considered in this 
paper, this can be accomplished in a rather simple manner. 

2. First-Order Accuracy (Scalar Case). In this section we consider the IVP (1.1) for 
a single conservation law. In the scalar case, the total variation in x of the solution 
to the IVP (1.1) is diminishing in time. Therefore, we consider finite-difference 
approximations in conservation form (1.2) that are also total-variation diminishing 
(TVD), i.e., 

(2. 1a) TV n )<TV(Von ) 
where 

(2 .1b) TV( v) =E I Aj + 112V l 
j= -00 

here, and throughout this paper, we use the notation 
(2.2) Aj+l/2b = bj+l -b 

for any mesh-function b. 
First let us consider the constant coefficient case f(u)= au, a = constant. A 

linear (2K + 1)-point scheme is consistent with (1.1), if of the form 
K 

(2.3a) Vn+?l = E Bk(V)V?k, v = Xa, 
k=-K 

K 

(2.3b) E Bk(v)-v. 
k=-K 

If (2.3a) is a first (or higher)-order accurate scheme, then 
K 

(2 .3c)E k( )-} 
k =-K 

Subtracting (2.3a) at j from (2.3a) at j + 1, we get 
K 

(2.4a) = j +1/2 
= E Bk(V) j+?k+1/2Vn. 

k = -K 
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Hence, (2.3) is TVD if, and only if, 

(2.4b) Bk(v)> O for kI<K. 
Condition (2.4b) also implies that (2.3a) is a monotone scheme; consequently, a 
linear TVD scheme is only first-order accurate (see [2]). Second-order accurate TVD 
schemes are essentially nonlinear in the sense that they are nonlinear even in the 
constant coefficient case. 

We turn now to describe a (2K + 1)-point scheme that is TVD under the maximal 
CFL restriction (1.3). 

To construct this scheme we operate K times with the 3-point upstream-differenc- 
ing scheme 
(2.5a) = [L(v)v ] j= v7 -jv-/l/2V2- 

where 

(2.5b) v?-= 2 (V _ | V |) 

and then consider it to be a single step of a (2K + 1)-point scheme, i.e., 

(2.6a) Vn+1 = [L(v/K )] Kvn. 

Expressing L in (2.5a) in terms of translation operators TkvJ- k' we get in (2.6a) 

(2.6b) j = [1 -Iv/K +(v+/K)T-1 (v-K)TI KVn. 

Using the binomial expansion in (2.6b), and the fact that v+v-= 0, we rewrite (2.6) 
as (2.3) with 

(2.6c) B?k(V) bo(IvI/K) fork-0, 

where 

(2.6d) b(x) ={(( )Xk(l _ x)Kk for k > 1, 

(1 _ X)K for k = 0. 

Obviously, Bk(v) > 0 for jvj < K. 
The scheme (2.6) can also be written in the conservation form (1.2): 

(2.7a) jn~ = X-( fj+ 1/2 - j- 1/2)' 

with 
K--1 

(2.7b) -fj+1/2 X (fj + fj+) E Ck(V)?j+k+l/2v 
k=-K+l 

where 

(2.7c) C?k(V)= co(v/K) fork0, 

and 

I (K)XIE k (+ 
K l 

1(kl +)(_x)k forl> 1, 

(2.7d) c,(x) k=k1 +1 

_X 2Kxfor I = 0; 

fj denotes f(v1). 
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The relation between b, (2.6d) and c, (2.7d) is given by 

(0 forK 1 > 2, 

(2.8a) b, = c,11(x) + c,+1(x) - 2c,(x) + - 
K 

x for I = 1, 

t1 forl= 0, 

where we have used the convention that c1,(x) = CK(X) = 0. 
It follows from (2.8a) and (2.6d) that 

K-1 K-1 

(2.8b) 2 E c,(x) = E 12b,(x) = K(K - 1)x2. 

Next we extend the first-order accurate scheme (2.7)-(2.8) to nonlinear conservation 
laws by 

Vn?1 = n_ (2.9a) vj = - _A + 1/2- j- 1/2) 

K- 1 

(2.9b) Xfj+l/2 2(fj + fj+1l) - Ck(Kj+k+-i2)Aj+k+112V 
k=-K+1 

where rj+ l is the following mean-value CFL number 

(2 .9c) vj+ 1/2 = Xjj+ 1/2, aj+ 1/2 = j + 1/2 P^j+ 112V 

and Ck(x) are (2.7c). 
We now show that the scheme (2.9) is TVD under the CFL restriction 

(2.10) max IVj+ 1/21 4 K. 
I 

To see that, we subtract (2.9) at j from (2.9) at j + 1 to get 
K 

(2.11a) ? j+ 1/2V = E Bk(Ij+ k+12 )j+k +l /Vn 
k = -K 

Here Bk(x) are (2.6c); this follows directly from the relation (2.8a). Hence 

Bk(Vj+k+1/2) > 0 under the CFL restriction (2.10), and 
K 

(2.11b) Bkllx)1 
k=-K 

Taking absolute value of (2.11a) and using the triangle inequality, we get 
K 

(2.11c) ?1j+ 1/2v | Fa Bk(Vj+k?+1/2)lkj+?k+/2V I. 
k = -K 

Summing (2.11c) from j = -x to j = + x, we get by shifting indices and using 
(2.11b) that 

00 oo K 

TV(Vn+l) = 
V 

nj?1/2V+ | 
j=-00 j=-oo k=-K 

oo K 00 

- E I Ij+l/2VnI a Bk(V?j+l2) = I IAj+l/2vn TV(vn). 
j=-0 k=-K j=-oo 
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The scheme (2.9) with Ck(x) defined by (2.7c) admits a stationary expansion shock 
as its steady solution (see [4]). To prevent this violation of the entropy inequality, 
and at the same time make the numerical flux a smooth function of its arguments, 
we replace IvI in (2.5b) and (2.7c) by 

(2.12a) Q(V) [?(v/e+e) forlvl<e = 

UVI for I v I e, 

where 8 has the dimension of velocity (see [4] for more details). Denoting 

(2.12b) 11 +(v) = 2[Q(v/K) ? v/K], 

we take Ck(V) in (2.9b) to be 

fCk(IT(V)) for 1 < k < K - 1, 
(2.12c) Cik(v) KQ(j) fork=0. 

The coefficients Bk(v) in (2.11a) become 

(2.13) B ?k(v) ( b0(jtL(v)) + b0(L+?(v)) - 1 for k = 0, 

where bk(x) are (2.6d). We note that if e = 0 in (2.12) then Bk(v) in (2.13) become 
identical to (2.6c). Hence, for e sufficiently small' (namely e < 2K(1 - 2-1/K)), 
B ? k(v) > 0 for IvI < K, and the scheme (2.9) with (2.12) is also TVD under the 
CFL restriction (2.10). 

The scheme (2.9) is a first-order accurate approximation to (1.1). Its modified 
equation, i.e., the equation it approximates to second-order accuracy, is 

(2.14a) u, +f(u) =A 

where 

(2.14b) A= ha(v)u, 

(2.14c) ( ) 2 ( 

clearly, a(v) > 0 for jvj < K. 
In the next section, we convert the (2K + 1)-point first-order accurate TVD 

scheme (2.9) into a (2K + 3)-point second-order accurate TVD scheme. Our tech- 
nique is based on the following observations: 

(i) The scheme (2.9) is TVD for any flux, provided that the CFL restriction (2.10) 
is satisfied. 

(ii) Consider the application of the scheme (2.9) to the flux f + g/X, where 
g = g + 0(h2), and g is defined in (2.14). By the definition of a modified equation, 
the numerical scheme (2.9) is a second-order accurate approximation to its solutions. 
However, the modified equation (2.14) corresponding to (2.9) with f + g/X satisfies 
u, + fX = 0(h2). Hence (2.9), with the flux f + g/X, is a second-order accurate 
approximation to (1.1). 
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3. Second-Order Accuracy (Scalar Case). In this section, we convert the scheme 
(2.9) into a second-order accurate one, by applying it to a modified flux f + g/X, as 
follows: 

X l/2 = 2(+ t+ + + ) ( 

(3.1b) - j X Q + Y)2 jk-1/2)Ik-1/2V 

k=-K+l 

where Ck(x) is (2.12), 

(3 .1c) gj= s * max{O, min(ay+?l/2| Jy+l/2v |,s 5 fr-/2/\Jd /2V)} 

and 

(3.ld) +1= 

here s = sgn(zAJ+ /2v), and (Jj+ l/2 = a(VJ(l/2); cf. (2.14c). 
In [2], we study g1 and show that wherever v is smooth 

(3.2a) (i) =(gj + gm mn) = +(121 2V+ 0(h2) = gj1l/2 + 0(h ), 

(3.2b) (ii) YYjl/2+112/2V = gj +1-2= 0(h ) 

and that if wl v is/2v > 0, then 

(3.2c) (iii) IYj+1/21 = j+/29/Aj+1/2V I a(rj+112)- 

We turn now to analyze the order of accuracy of the scheme (3.1). To do so, let us 
assume that v is smooth in a neighborhood of Xj+1/2 and expand the numerical flux 
(3.1b) around Xj+1/2 up to 0(h2) terms. Since Ck(x) in (2.12) are Lipschitz-con- 
tinuous functions, we get from (3.2b) that 

I[Ck(Vi+1/2 + Yi+l/2) - Ck(Vi+l/2)] i+1/2VI < K Yi+012Ai+112Vj O(h 2); 

therefore, 

Ck(Vj+k+1/2 + Yj+k+?12)Aj+k+?12V 
= 

Ck(Vj+k+?12)Aj+k+?12V + 0(h 2) 

= Ck(v)hvx 1 
+ 0(h2) = hCk(v)vx I+ 12 

+ 0(h 2). 

Using the above relation and (3.2a), we get 
K- 1 

(3.3a) Xfj+)12= Xf + hy(v)vx-h E Ck(V)Vx + 0(h2). 
k=-K+ l j+1l/2 

Since by (2.7c) and (2.12c) 
K-1 

E Ck(v) 

(3.3b) k=-K+1 

- 2Q(v) + ?K(K- 1){(2U[Q(V) VI]) +(2K[Q(v) + 

we get by (2.14c) that 
K-1 

E Ck(V) =-2, 
k=-K+l 
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and, therefore, 

(3.3c) =[Xf-h2vXI jjl/2 
+ 0( h2)). 

Let us express the 0(h2) term in (3.3c) as 

13+l/2h2 + 0(h3) 

and examine the smoothness of the coefficient Pi. We see that except for the critical 
points vx = 0 where gj in (3.1c) is not differentiable, the coefficient Pi is a Lipschitz 
function of x, 

fj+1/2 - /j-1/2 = 0(h), 
and, therefore, 

j 
j - J?+ 1/2- 1/2) = .- , + 2 (a vX + 0(h3) 

= [V + TV, + 2 vj] + 0(h 3) = v(xj, tn + T) + 0(h 3). 

This shows that, except at critical points, the scheme (3.1) is second-order accurate in 
the sense of local truncation error. 

Next, we show that the scheme (3.1) is TVD under the CFL restriction (2.10). 
Since (3.1) is (2.9) applied to f + g/X, it follows that it is TVD, provided that the 
CFL restriction 

(3.4a) max I Vj+l/2 + Yj+1/21 < K 

is satisfied. The inequality (3.2c) enables us to replace the condition (3.4a) by a CFL 
restriction on v alone, i.e., 

(3.4b) max [IVj+l/21 + (Vj+l/2)] < K. 

It is easy to see that Jvj + a(v) does not have a local maximum in (-K, K), 
consequently, if Jvj < K, then 

(3.4c) vI + a(v) < K+ a(K) = K. 
We conclude that (3.1) is TVD subject to the original CFL restriction (2.10). 
Remarks. (1) gj = g(v>_1, vj, vj+l) and consequently 

'yj+1/2 = 'Y(VJ-19 VJ9 VJ+19 Vj+2). 

Although the numerical flux (3.1b) has the same functional form as (2.9b), its 
dependence on the numerical characteristic speed y enlarges its support by 2 points. 
Therefore, a (2K + 1)-point first-order accurate scheme (2.9) is converted into a 
(2K + 3)-point second-order accurate scheme (3.1). 

(2) gj in (3.1c), which is 0(h), can be modified by the addition of gj = 0(h2); 
this leaves the scheme second-order accurate, and g can be so chosen to leave the 
CFL restriction unchanged. The purpose of such a modification is to introduce 
artificial compression for contact-discontinuities and shocks (see Section 5 and [2] 
for more details). 

(3) We have shown that the scheme (3.1) is second-order accurate in the sense of 
local truncation error, except at critical points where it remains first-order accurate. 
Numerical experiments in [10] show that the cumulative error in smooth problems 
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behaves in a similar manner: It is second-order except at local extrema where it 
degenerates locally to first-order. Consequently, the global cumulative error in 
smooth problems is second-order in the Li-norm, but only first-order in the 
maximum norm. 

4. Systems of Conservation Laws. In this section we describe how to extend the 
new second-order accurate scheme (3.1) to hyperbolic systems of conservation laws. 
Our extension technique is a somewhat generalized version of the procedure sug- 
gested by Roe in [8]. 

Let A(u) be the Jacobian matrix of f(u) in (1.1), 

(4.1a) A (u) = fu (u), 

and denote its eigenvalues and right-eigenvectors (columns) by ak(u), rk(u), 1 < k 
< m, respectively. Since the set of eigenvectors is complete (by the hyperbolicity 
assumption), the matrix 

(4.1b) R(u) = (rl(u),...,rm(u)) 

is invertible. The rows 11(u),... , lm(u) of R-1(u) constitute the biorthonormal 
system of left-eigenvectors; thus 

(4.1c) Pr1 = Sijg 

and 

(4.1d) R-1AR = A, AAU= aisij. 

Next, we define characteristic variables w with respect to the state u by 

(4.2a) wk = lk(U)U 1 < k < m, 

or 
m 

(4.2b) u = w krk(u). 
k=1 

In the constant coefficient case, (1.1) decouples into m scalar equations for the 
characteristic variables 

(4.3) wtk +akw =O, ak = constant, 

and therefore TV( wk) is diminishing in time for all 1 < k < m. 
To retain this property, we extend our scheme to systems of conservation laws by 

applying (3.1) to each of the scalar locally defined characteristic variables, as 
follows: 

Let Vj+1/2 = V(vj, vj+ ) be some symmetric average of v; and vj+ , and denote by 
k k dtk t ( Le 

a and j1/2 the respective quantities of A(+12) Le a12 be the a+1/2, rj1~1,2 an + e/ respectv ?h/ component of (ov+ 1 - vj) in the k th characteristic direction, i.e., 

(4.4a) k lk = ? Ak 7V 

or 
m 

(4.4b) k k 
(4 )j+1/2 = +1/2rj+1/2, 

k=l 
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and define 

(4.5a) rj" = XQ-At+1/2-t-/) 
A 

Vfj+ /2 = 2(j + fj+f1) 

(4.5b) m ! 
(gjk+ k K-- k + Er 'i?/\\J~ +i)_ - C,(v'k+ykj 

where 

(4.5c) gk = s max[0, min( 1/2 1/21 S ' U1/2aj 1/2] 

s = sgn( ak+ 1/2) 9 

(4.5d) Yj+ 1/2 = Aj+ 1/2 kj+ 1/29 

and 

(4.5e) j+ 1/2 =X aj + 1/2; 

here a1k/2 is (4.4), 1jkl/2 = a( jt+1/2) (2.14c) and C1(x) are (2.12). 
It is easy to see that in the constant coefficient case indeed 

0O 

(4.6) TV(wk) E Iaj+1/21 
j= -00 

is diminishing in time for all 1 S k < m. 
This property does not depend on the particular forms of averaging Vj+1/2= 

V( v, vj+l ). However, if we want the scheme (4.5) for m = 1 to be identical to (3.1), 
we have to choose (4.5e) so that j + 1/2 is the mean value CFL number (2.9c). This 
can be accomplished by taking the eigenvalues a1k!2 and the eigenvectors lk+1/2 
and rJk+ 1/2 in (4.5) to be those of A(vj, Vj+ 1/2), where A(u, v) is Roe's mean-value 
Jacobian (see [9]). This matrix satisfies 

(4.7a) (i) f(v)-f(u)=A(u,v)(v-u), 

(4.7b) (ii) A(u, u) = A(u), 
(iii) A( u, v) has real eigenvalues 

and a complete set of eigenvectors. 

(See [2] and [3] for more details.) 
We note that in increasing K, the only extra computational work is in the 

calculation of 
K-i 

(4.8) E C1(pk + Yk)j+,+1/2aj+I+1/2 
I-K+ 1 

in (4.5b). Since (4.8) is a scalar quantity, and C,(x) are rather easy-to-compute 
polynomials of degree K (see table), one can expect to gain in computational 
efficiency by taking K > 1. 

The enlargement of the numerical domain of dependence of the scheme with a 
larger K requires a special treatment of boundaries. In the Appendix we show that 
this can be accomplished in a rather simple manner. 



388 AMI HARTEN 

5. Numerical Examples. In this section we present some numerical examples in 
order to demonstrate the performance of the scheme (4.5) for various choices of K. 

We consider a Riemann problem for the Euler equations of gas dynamics 

(5.1a) us + f (U)x = 09 (X UR X= O 

(5.lb) u = (p, m, E)T, f (U) = (m,gm2/p + P, m(E + P)/p)T, 

(5.1c) P = (y - 1)(E - Im2/p). 

Here p,m, E and P are the density, momentum, total energy, and pressure, 
respectively; we take y = 1.4. 

As in [2] we choose 

(5.2) UL = (0.445,0.311,8.928) , UR = (0.5,0,1.4275) 

In Figures 1 and 2, we present calculations with 140 cells and h = 0.1. The solid 
line shows the exact solution; the circles are the discrete values of the numerical 
solution. In all these calculations we have used Roe's linearization (see [2] for more 
details). 

In Figure 1, we present calculations performed by the scheme (4.5) with various 
choices of K; these are shown at about the same physical time. Figure 1(a) shows the 
results for K = 1 with a CFL number 0.9 after 111 time steps. Figure 1(b) shows 
K = 2 with a CFL number 1.8 after 55 time steps. Figure 1(c) shows K = 4 with a 
CFL number 3.6 after 27 time steps. In Figure 1(d), we show K = 6 with a CFL 
number of 5.4 after 18 time steps. 

We observe that the shock in Figure 1(d) has propagated about 52 cells in 18 time 
steps. Unlike other large time-step methods, the deterioration in quality with 
increasing CFL number exhibits itself in the form of excessive smearing rather than 
the creation of spurious oscillations. It is interesting to note that it is the rarefaction 
wave that produces such oscillations. 

In Figure 2 we repeat the calculation in Figure 1, but now we add an artificial 
compression/rarefaction term to the scheme (4.5) by modifying gk in (4.5c) to be 

(5.3a) (I + ,Lkok) * gk 

where Ojk is an automatic switch of the form 

(5.3b) Ok=jak ~ ~ (5 .3b) aJ | a~j + 1/2 as1/2 1( J+1/21| + I aJ-1/2 1)- 

a +1/2 is (4.4a). 0 is O(h) in regions of smoothness and always 0 < 0 < 1. Taking 
,u > 0 in (5.3a) corresponds to applying artificial compression, while ,u < 0 has the 
effect of artificial rarefaction. Here we take 1k I in the linearly-degenerate 
characteristic field and 

(5.3c) k = _sgn(aj k1/2 - a>12 ) 

in the genuinely nonlinear characteristic fields (see [2]). 
Comparing Figure 1 to Figure 2 we see that the addition of artificial rarefaction 

acts to suppress the spurious oscillations at the expense of excessive rounding of the 
corners of the rarefaction wave. The addition of artificial compression improves the 
resolution of both the shock and the contact discontinuity. 
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APPENDIX A 
Treatment of Boundaries. In this section, we discuss numerical approximation for 

the initial boundary-value problem 

(A.1) Ut + f (u)x = 0, 0 < x < x 0, t > 0. 

Let wk be the characteristic variable (4.2). The initial boundary-value problem is 
well-posed if 

(A.)k( t f) specified if ak (u (0, t)) > 0, 
(A.2) wk(0, 0 - 

~~unspecified if ak (, ) 0. 

We assume that we know v7n for j> 1. We set v0 to be the following: Let 
w k = lk(vn)vn be thecharacteristic variable of vn, and define 

m 

(A.3a) Vn = al n al kr( aln), 
k=1 

where 
k k~~~if k(vi) >0 

(A.3b) ak = (W liwk(0 tn) if a 
(vi) <0, 

Next we define in (4.5) 

(A.3c) k= a(vP/2)a4/2 1 < k < m. 

Note that the definition (A.3c) does not alter the properties (3.2). 
With this setup, we can use the scheme (4.5) to compute vjn + , j > K. Clearly, for 

K = 1 the boundary treatment is complete, and we can compute the numerical 
solution for all j > 0, n > 0. Hence, for K > 1 we can complete the calculation of 
Vrn+ for 1 k < K- i by successively applying (4.5) with K 1 and (A.3) to 
obtain 

Vjn+(l+1)/K, 0 < < K- 1, 1 < Js < 3(K- 1)-21. 

To maintain conservation form of the combined scheme, we use a technique 
suggested by Osher [7]. Let tj+ 1/2,K denote the numerical flux (4.5b) with an integer 
K computed at V n, and evaluate the combined scheme as follows: Use (A.3) and 

vn+(1+1)IK = vn+11K _ n+11K - f n+11K) 
(A.4a) Vil J, K 

I 
( 1/2,1 Jfi/ - 1/2,1 

forO < 1 < K- 1, 1AJA< 3(K- 1) - 21, 

to evaluate <j? for l <j < K - 1. To calculate vj7 for K+ 1 < j we use 

(A.4b) V?1 =Vj -(j+1/2,K -i _1/2,K) 

The advance to the level n + 1 is completed by 

(A.4c) Vn/1? = Vn = x(f+1/2,k fK-1/2) 

where 
K-1 

(A.4d) fK-1/2 = K ? 1/21 
1=0 

It is the particular definition of VK+ 1 in (A.4c, d) that enforces the conservation form 
of the combined scheme. 
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The combined scheme (A.4) has an O(h3) truncation error for all j > 1. Using the 
first-order accurate 3-point scheme (2.9) in (A.4a) reduces its domain of dependence 
to 1 < J, < 2(K - 1 - 1). This is certainly adequate if a k(V) < 0 for all 1 < k < m. 

We remark that if we take E = 0 in (2.12a), i.e., Q(v) - v, then (4.5) becomes an 
upstream-differencing scheme with respect to the characteristic field a + y/X. 
Relations (3.2c) and (3.4c) imply that 

(A.5a) jIyj<j|Vj forj|Vj< K 

and, therefore, 

(A.5b) sgn(v + y) = sgn(v). 

This shows that (4.5) is an upstream-differencing scheme with respect to the original 
characteristic field a(u). 

Next, let us consider the scalar case and assume that an?k?/2 < 0 for -K + 1 < 
k < 0. It follows from (2.9), (2.7c, d) and (2.8a, b) that the numerical flux (3.1b) can 
be expressed as 

K-1 

(A.5c) XI)+1/2 = Xfj+1 + -j+ ? Ck(pj+k+112 + Yj+k+1/2)Aj+k+1/2V 
k=1 

Thus, if a+?1/2 < 0 for 0 < K - 1, then XIj+1/2 in (A.5c) is defined for j > 1, 
and therefore vj7 ? can be calculated by (3.1) for all j > 0. This also shows that if 
aj+ 1/2 < 0 near j = 0, then the combined scheme (A.4) does not use the extrapo- 
lated value vo. 

TABLE 

The coefficients Ck(X) (2.7d) for 2 < K < 5 

3 X 2(3 -x) X 
4 x2(6 - 4x + x2) 2X3(2 - x) x4 

5 x2(10 - lOx + 5X2 - x3) x3(10 - lOx + 3x2) X4(5 - 3x) x5 
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